Performing populism: Trump’s transgressive debate style and the dynamics of Twitter response

Erik P Bucy
Texas Tech University, USA

Jordan M Foley
Josephine Lukito
Larissa Doroshenko
Dhavan V Shah
Jon CW Pevehouse
University of Wisconsin–Madison, USA

Chris Wells
Boston University, USA

Abstract
Populism, as many have observed, is a communication phenomenon as much as a coherent ideology whose mass appeal stems from the fiery articulation of core positions, notably hostility toward “others,” bias against elites in favor of “the people,” and the transgressive delivery of those messages. Yet much of what we know about populist communication is based on analysis of candidate pronouncements, the verbal message conveyed at political events and over social media, rather than transgressive performances—the visual and tonal markers of outrage—that give populism its distinctive flair. The present study addresses this gap in the literature by using detailed verbal, tonal, and nonverbal coding of the first US presidential debate of 2016 between Donald

Corresponding author:
Erik P Bucy, College of Media and Communication, Texas Tech University, 3003 15th Street, Lubbock, TX 79409-3082, USA.
Email: erik.bucy@ttu.edu
Trump and Hillary Clinton to show how Trump’s transgressive style—his violation of normative boundaries, particularly those related to protocol and politeness, and open displays of frustration and anger—can be operationalized from a communication standpoint and used in statistical modeling to predict the volume of Twitter response to both candidates during the debate. Our findings support the view that Trump’s norm-violating transgressive style, a type of political performance, resonated with viewers significantly more than Clinton’s more controlled approach and garnered Trump substantial second-screen attention.

Keywords
Candidate nonverbal behavior, Donald Trump, Hillary Clinton, political performance, populism, second screening, transgression, 2016 presidential debates

Long on the fringes of mainstream politics, populism is as much a communication phenomenon as it is an ideology (Jagers and Walgrave, 2007). Correspondingly, a great deal of analytical effort has been focused on populist parties’ and politicians’ use of language to vilify “others” and rage against “elites” while attempting to consolidate power in the name of “the people” (see Aalberg et al., 2018). Although primarily associated with political movements in Europe and South America, populism has a long history in the US context dating back to the 1830s (Lowndes, 2017). The 2016 presidential election witnessed a resurgence of American-style populism, bringing Donald Trump to the White House on a wave of anti-immigrant and nationalist sentiment. Trump’s messaging has been examined for its distinctive simplicity, anti-elitism, and nativism (see Oliver and Rahn, 2016), but there is an equally important performative dimension to populism that scholars have largely overlooked.

Candidate display behavior has not been ignored in the press. Indeed, Trump’s use of exaggerated facial expressions and seemingly arbitrary and defiant gesturing—what CNN once referred to as his “bumptious body language” (Cohen, 2015)—was a routine feature of campaign coverage in 2016 and continues today. Similar patterns have been observed in the behavior of European populists, including the Dutch politician Geert Wilders and Marine Le Pen in France. During her 2017 presidential bid, Le Pen’s cantankerous debating style was characterized by persistent contention and interruptions (Bédéi, 2017), expressed through invectives leveled on her opponents (McPartland, 2017). Following these performances, Le Monde bestowed on her the nickname “flame thrower” (Schneider, 2017). Related qualities have been attributed to Bernie Sanders in the United States, who is known for his “fiery rhetoric” (Cassidy, 2016), evocative anecdotes, and expressive gesturing (Leith, 2016). The communication of populism, it seems, involves a palette of behaviors that convey the speaker’s indignance.

In this article we thus broaden the definitional ambit of populist communication to include the verbal, tonal, and nonverbal elements of candidate discourse. Using biobehavioral coding of the first presidential debate between Donald Trump and Hillary Clinton in 2016, we show how Trump’s transgressive style (i.e. his violation of normative boundaries, particularly those related to protocol and open displays of frustration
and anger) differed from other candidates and generated a strong response from viewers as the debate unfolded. To test this, we first investigate the extent to which Trump’s communication style corresponded to a populist mode of behavior and delivery, and how Trump’s approach in 2016 not only differed from Clinton’s debate performance but also that of Barack Obama and Mitt Romney in 2012. Second, we link our coding to real-time Twitter response during the debate to examine whether Trump’s transgressive style enabled him to dominate the online discourse about the debate through means other than rhetorical argumentation, namely, with nonverbal aggression—a strategy akin to the forceful communication approach observed in studies of other populist leaders (Hameleers et al., 2016; Müller et al., 2017).

Our analysis documents how Trump’s brashness provoked a heightened response from viewers via social media compared with Clinton’s more measured approach, generating more social media attention to Trump, potentially reflective of an “enthusiasm gap” between the candidates’ supporters (see Bucy, 2016). To contextualize the analysis, we situate our work in relation to the literature on populism, digital campaign interactions, and political performance.

Populism: ideology and style

As populist politicians have gained in appeal and prominence internationally, particularly in Europe but also South America and other regions (Aalberg et al., 2018), scholars have sought to identify the core elements of their appeal. Invariably, some conceptual ambiguity has arisen. Populism is considered both an ideology (Mudde, 2004) and a style of performing politics (Taggart, 2000). The former approach describes populism as a worldview, which attempts to achieve political advantage by exacerbating divisions between urban centers and the rural heartland, between “the people” and ostracized “others” (i.e. immigrants), and between corrupted elites and ordinary citizens (Jagers and Walgrave, 2007). In this vein, populism has been defined as a “thin” ideology (Mudde, 2004) with a chameleonic nature (Taggart, 2004) that may latch onto more substantive ideologies, such as liberalism, nationalism, and socialism, allowing it to be assimilated by both left- and right-wing politicians alike.

Populism as a style of political performance emphasizes eschewing tradition and breaching taboos (Rensmann, 2006), as well as charismatic leadership (Canovan, 1999). Krämer (2014) offers a synthesis between these two approaches, suggesting that populism is a form of political rhetoric with a simplified ideological core, comprised of a plebiscitary and charismatic claim to power and embodying anti-institutional but authoritarian tendencies. From this perspective, any unfavorable change in society is seen to arise from a “betrayal of the ‘true people’ by some kind of elite,” which has subjected the citizenry to “illegitimate constraints [that] requires transgression, which often comes in the form of angry incivility” (Ostiguy, 2017: 76). As such, populism communicates directly to “the people,” bypassing traditional elites and institutions, including mainstream media, and uses plain, emotive, and moralist language that appeals to common sensibilities (Krämer, 2014). Social media, in particular, provide populists with a direct link to the people, allowing for uncontested message dissemination and a megaphone for criticism and attack (Bartlett et al., 2011).
On the political right, parties such as the French National Front (FN), United Kingdom Independence Party (UKIP), and Danish People’s Party (DF) surged in the European Election of 2014, while in the United States individual candidates inspired by the Tea Party movement within the Republican Party have embraced a populist style in recent elections (Lowndes, 2017) Trump’s rise was partially fueled by his intensive use of Twitter to communicate with supporters in brash, accusatory language (Pelled et al., 2018; Wells et al., 2016a), while his debate performances were disruptive affairs characterized by a disregard for conventional norms accorded to formal political events (Bucy and Gong, 2018; Cohen, 2015). Indeed, Trump’s nonverbal performance of populism during the 2016 debates loudly but effectively conveyed his message of disruption, reinforcing and perhaps outstripping his verbal tirades and attacks.

Populist style and political performance

As Engesser et al. (2017) observe, many stylistic techniques are attributed to populism (e.g. dramatization, polarization, moralization, directness, ordinariness, colloquial articulations), but these features can be distilled into three major communicative dimensions: simplification, emotionalization, and negativity. Simplification corresponds to the pared-down ideological “us versus them” core of populism, which evokes the struggle of the people against corrupt elites for political sovereignty, hostility toward “others,” and the use of simple, ordinary language and associated behavior to communicate with the masses (Engesser et al., 2017; Mudde, 2004). These characteristics tend to be conveyed in short words, colloquial phrases, and arguments appealing to “common sense” logic (Oliver and Rahn, 2016).

The second aspect of populist style, emotionalization, stems from the rivalry between the people and “others” who they see as imposing on and compromising a cherished way of life (Engesser et al., 2017). Social relations are cast in antagonistic terms between the people, elites, and vilified out-groups, especially immigrants, who become the focus of social anxieties in populist rhetoric. Response to perceived social crisis from populist actors involves dramatization such as on-stage histrionics, bluster, and use of emotional language (Canovan, 1999; Oliver and Rahn, 2016)—elements of a political performance that marshals anger, fear, and resentment toward perceived adversaries while projecting hope onto the populist leader who promises to deliver the masses from their plight (Hameleers et al., 2016).

Emotionalization feeds into the third aspect of the populist style, negativity, which arises from perceiving elites and “others” as threats to a better life and depicting the present in dark terms (Taggart, 2002). Among supporters of populist candidates, attitudes of societal decline and deprivation take hold (Elchardus and Spruyt, 2016) and resentments form toward “others,” particularly cosmopolitan elites, who are viewed as enjoying undue social advantages (Rico et al., 2017). The socioeconomic conditions within which populists operate, including a supposed breakdown of law and order, are depicted as being in grave crisis, even if objectively fine. To convey this dire state of affairs, populists resort to a mélange of angry accusations and dire predictions while lashing out with threats against those who would stand against restoring sovereignty to the people (see Engesser et al., 2017).
Expressed anger is a pillar of the populist style, bringing together the dimensions of emotionalization and negativity. Incivility projects this anger as strategy, signaling that the status quo is no longer acceptable (Herbst, 2010; Ostiguy, 2017). Whether anger and incivility by populist leaders provokes feelings of outrage that moves followers to action remains an open question, though empirical research shows that economic anger is associated with support for populism over time (Rico et al., 2017). Anger also mobilizes, increasing the likelihood of political efficacy and engagement (Valentino et al., 2011) and strengthens reliance on partisan cues and motivated reasoning (Weeks, 2015).

Herbst’s (2010) suggestion that “civility and incivility are strategic assets used by those pursuing specific interests,” (p. 124) not only draws our attention to candidates’ verbal, nonverbal, and tonal indicators (Bucy, 2011; Masters et al., 1986) but also to the ways that deeply embedded cultural scripts code incivility and other forms of political transgression in a society stratified by race and gender (Alexander, 2011; Lozano-Reich and Cloud, 2009). While it is important to conceptualize performative indicators of populism that are comparable across cases, they must not be viewed as equally accessible and efficacious for all political figures. Non-White and female candidates are often subject to more critical scrutiny and are held to a different standard of decorum and civility, than White male politicians. In the contemporary moment, what once suggested a lack of self-control and appropriate temperament is coded as authentic indignation at the injustices inflicted by elites on the people.

Operationalizing populism in political debate

The preceding discussion traced the contours of a transgressive populist communication style. Next, we study the on-stage behavior of Donald Trump and Hillary Clinton in a highly constrained and widely viewed context: American presidential debates. To our knowledge, this is the first formal analysis of populist communication in this arena. Televised debates provide an opportune setting to study populist behavior and networked participation through the second screen (i.e. the use of digital media to enhance or extend the TV viewing experience in real-time through social media postings). Foremost, presidential debates are central moments of collective attention during American elections and are correspondingly among the most tweeted-about media events on television (Shah et al., 2016). Televised debates facilitate the unfiltered “one step flow of communication” (Bennett and Manheim, 2006) between politicians and voters and offer supporters a direct link to each other via social media debate discourse. And because they are live televised performances, debates afford candidates a range of modalities with which to communicate their intentions to audiences—including both auditory and visual signals.

We expect the three core aspects of a transgressive populist style, simplification, emotionality, and negativity, to manifest verbally and nonverbally in Trump’s first 2016 general election debate performance. Operationalizing populism as a multidimensional communication phenomenon, we anticipate that Trump’s on-stage behavior—his utterances, tone, gestures, and expressions—will contain more populist markers than Clinton’s debate communication and embody performative elements of populism that are identifiable through systematic analysis.
Following previous work that combines the “big data” scoring of Twitter content with the hand-coded data of presidential debate behaviors to predict audience response (see Shah et al., 2016; Wells et al., 2016b), we test the relative influence of specific features of the candidates’ verbal, tonal, and nonverbal behavior—in this case, their use of a transgressive signaling—on viewers’ second-screen activity. To examine when and how Trump’s transgressive communication style provoked audience reactions during the first debate, we employ our content analysis of the candidates’ on-stage behavior as predictor variables in time series models that utilize corresponding real-time measures, synched and lagged, of the volume of Twitter expression about both candidates as our outcomes.

The analysis proceeds by first determining whether there are specific communication and behavioral instantiations of populism that can be reliably coded. Returning to the three major stylistic dimensions identified by Engesser et al. (2017), we expect simplification to be exemplified nonverbally by clear, unambiguous, and readily recognized facial expressions and gestures that are both attention-getting and noticeable in intent. Verbally, the populist style should be indicated by the use of simplified language, including nonfluencies, short phrases, repeated words, and other spoken condensations in lieu of long sentences and complicated arguments. Another common populist trope includes blaming elites and outsiders for problems.

Emotionalization should be evident in the anger that populists direct toward elites and outsiders, embodied by facial displays of anger/threat and defiance gestures that evoke an antagonistic relationship between the candidate, opponent, or implied adversaries. Anger displays have larger effects on supporters than critics and are particularly effective at bonding leaders and followers (Sullivan, 1996). Emotionalization might also be indicated by a negative or excited tone of voice, interruptions signaling impatience with formality and decorum, and inappropriate put-downs, side comments, and nonverbal behavior that are essentially norm-violating and incompatible with the rhetorical context of formal debate.

In addition to voice tone, negativity may be visible in antagonistic expressions and defiant gestures that communicate zeal for political battle. Verbally, negativity is also manifested in angry language that paints out-groups in hostile, resentful terms and blames elites for the current state of society as bleak and broken. Outrage may also be stoked by ad hominem attacks against the opponent, which perform the service of reducing the prestige of one’s rival while increasing the likelihood of supporters’ engagement (see Valentino et al., 2011).

For the study, we examine candidate behavior during the first presidential debate on 26 September 2016 at Hofstra University in New York and link this to Twitter responses mentioning the candidates during the debate. Two propositions guide the analysis:

P1: Trump’s communication style during the first general election debate of 2016 will be more consistent with a transgressive and populist mode of campaigning than Clinton, who will adopt a more conventional style.

P2: Trump’s transgressive delivery, particularly the visual and tonal dimensions of his performance, will generate a stronger response among viewers who are engaged in second-screen activity via the social media platform Twitter than Clinton’s more controlled and conventional style of debating.
Methods

The analysis proceeds in two steps. First, we present the results of a detailed content analysis of the first debate that systematically documents the visual, tonal, and verbal features of candidate performance, corresponding to a transgressive and often aggressive mode consistent with a populist communication style. From a review of the political behavior and debate literatures, we identify nine variables to represent transgression: angry and threatening facial expressions and tone of voice, defiance gestures, inappropriate displays, hostile interruptions, verbal nonfluencies, character attacks, and use of blame and anger language. We compare the frequency of the candidates’ expressive behaviors, expecting Trump to eclipse Clinton on violations of decorum and expressions of anger. Given the gender dynamics that likely constrained Clinton from taking a more aggressive stance in her 2016 debate performances (see Bauer, 2016; Everitt et al., 2016), we then compare Trump’s style with Barack Obama and Mitt Romney’s 2012 debate performances on a set of common behavioral indicators to assess Trump’s relative expressiveness when candidate gender is held constant.

The second part of the analysis uses our coding of the debates to predict the resonance of each candidate’s communication on second-screen responses by viewers during the debate. Specifically, we model the volume of Twitter mentions of both candidates during the debate in time series models that employ our communication measures as independent variables. Approximately 5 million tweets that fit this criterion were pulled for subsequent analysis using the social media aggregation service GNIP.

For the debate coding analysis, we used C-SPAN’s televised split-screen coverage of the first debate. Previous research on the 2016 presidential debates (Wicks et al., 2017) documented that other outlets simulcasting the first debate relied on the same core audiovisual feed, and that all of the major television news networks (ABC, CBS, NBC, Fox News, MSNBC, and CNN) overwhelmingly relied on the split-screen presentation throughout the debate. The split-screen presentation, which showed both candidates side by side from the waist up, enabled coding of all nonverbal responses, including reaction shots when the other candidate was speaking. Coding commenced with the first question asked of Hillary Clinton by the moderator and concluded immediately prior to the candidates’ closing statements. To standardize analysis across different variables, candidate behaviors were coded at 10-second intervals. Specific instances of communication behaviors were coded nominally, for either being present or absent. Durations and frequencies were not recorded. This process produced 530 codable segments per candidate during the debate.

Individual segments were coded for visual, tonal, and verbal elements of each candidate’s debate performance using detailed definitions. These variables generally map onto the populist categories of simplification, emotionalization, and negativity, although they are not mutually exclusive. Coding was performed for each candidate individually, from their first statements to their last responses, requiring multiple viewings of the debate.

Visual elements

Emotionalization and negativism are embodied by three types of visually apparent nonverbal behaviors: expressions of anger/threat, gestures signaling defiance, and inappropriate
displays. Consistent with a biobehavioral approach to nonverbal communication (see Bucy, 2017; Masters et al., 1986), facial expressions with one or more of these key elements were classified as anger/threat displays: lowered eyebrows, a staring gaze, the visibility of lower teeth, lowered mouth corners (frowning), facial rigidity that showed little to no movement, lips pressed firmly together, or an overall expression that was negative or hostile.

Defiance gestures were coded as hand and arm movements that visually signaled challenge to or disregard for authority, belligerence to an adversary “out there,” or threatening or dismissive actions toward the opponent (see Grabe and Bucy, 2009). Examples included finger pointing, wagging, or shaking; making or brandishing a fist; shaking one’s head in disagreement or disapproval; prolonged stares; or other behaviors signaling aggression.

Inappropriate displays, another form of visual transgression, occur when the candidate acted in an unexpected fashion in relation to the rhetorical context. If the context is causal and friendly but the candidate reacted in a manner that was visibly anxious, agitated, or erratic in a situationally inconsistent way, the segment was coded as inappropriate. Excessive head shaking, gesticulating, or efforts to attract attention and project discomfort or uncertainty without verbal justification would also count.

Tonal elements

Communicative influence stems not just from visually observable behaviors but also from voice tone and speech maneuvers like interruptions that facilitate the assertion of control over the conversation, which is a form of dominance (Dunbar, 2016). Voice tone is a paralinguistic cue present in all spoken communication that modifies the meaning of speech by imparting emotion and signaling social intent (see Schuller et al., 2013); as such, vocal intonations are used for a variety of expressive purposes such as disapproval or, in the case of an angry tone, threat. An angry or threatening tone was operationalized as statements in which the candidates’ voice during their speaking turns had a menacing or hostile feel; where they used confrontational verbal tactics to challenge the opponent; where the candidate revealed a desire to do political battle, or took exception to and forcefully rebutted a claim by the opponent; or where the tone of a segment could be characterized as enraged, contentious, or aggressive.

For purposes of analysis, interruptions are considered tonal because they also function as a paralinguistic cue and their success does not depend on fully articulating a point or understanding the substance of the words spoken. As Truan (2016) observes, interruptions “combine brevity and noticeability” (p. 127). In conversations or other rhetorical situations that require turn-taking, interruptions can either be benign and affiliative, or hostile and disaffiliative (Antaki, 2012). Our coding tracked five types of interruptions but we focus on three disaffiliative types: interjections, hostile takeovers, and instances of verbal chicken (Flam, 2016). These hostile interruptions are aggressive in intent and function to disrupt the continuity of the opponent’s speaking turn while stealing time and advancing the interrupter’s agenda. Like a menacing tone, hostile interruptions represent violations of debate decorum and incursions on the opposing candidate’s speaking rights; as such, they constitute another element of the populist’s transgressive mien.
Rounding out the repertoire of visual and tonal elements of populist debate performance are the verbal markers of an accusatory, resentful, and transgressive style. Verbal variables included in the analysis consist of character attacks, verbal nonfluencies, and blame and anger language. These indicators map onto populists’ emphases on simplification and negativity. Character attacks consisted of personal insults and strikes on the opponent’s character, largely devoid of policy content, including short put-downs. Examples include calling the opponent forgetful, unqualified, lacking the right temperament for the job, not having the right family background for high office, or assailing other personal qualities (see Geer, 2006).

Verbal nonfluencies included a more “off the cuff” style of speaking, stammering or stuttering, mispronouncing or repeating words, broken words or phrases, non sequiturs or comments unrelated to the posed question or discussion at hand (Exline, 1985). Such inelegant and ungraceful use of language represents the kind of simplified, vernacular speech and eschewing of formality that populists and their followers embrace.

Character attacks and verbal nonfluencies were coded manually by human coders, while instances of blame language and angry vocabulary were computer-coded. To do so, we subjected the transcript of the debate to two dictionary-based computational text analysis programs. The first, DICTION (see Hart and Jarvis, 1997), measures the use of about 40 different rhetorical devices, including praise (positive adverbials representing affirmation), aggression (support for the use of force), and blame (terms indicating social inappropriateness, evil, or cause of problems). The second program, Linguistic Inquiry Word Count (LIWC; see Tausczik and Pennebaker, 2010), operates similarly but its dictionaries focus on psycholinguistic features of language, including emotion (e.g. anger, sadness), certainty, and drives (i.e. motivations). From DICTION, we utilized the Blame feature, identifying words used to indicate social undesirability and attribute fault, such as “fascist,” “cruel,” and “naive.” From LIWC, we tracked the use of anger in the candidates’ discourse, as indicated by words like “hate” and “annoyed.”

Finally, we included a set of control variables indicating whether Trump or Clinton was speaking to account for the possibility that Twitter responses may be driven by which candidate is talking during any given 10-second segment. Thus, we add two binary control variables to each set of models: one for whether Clinton is speaking or not and another for Trump.

Intercoder reliability

Two trained graduate student coders followed a detailed codebook with variable definitions to document the presence or absence (1 = present, 0 = absent) of each defined category for each candidate, over each 10-second segment. One coder specialized in the verbal variables, while the other coder focused on the nonverbal and tonal variables. The exception was blame and anger language, which were parsed by text analysis software and then converted into nominal format at the individual segment level. For intercoder reliability, 69 individual segments, or 13% of the analyzed content, were randomly selected at 9 different time points during the debate and assessed by a third coder.
Because the variables were nominal, manifest, and non-normally distributed (showing low variability), percent agreement is reported instead of alpha reliability scores (see Feng, 2015). Although percent agreement does not make allowances for chance agreement, it is appropriate for nominally scaled coding under these conditions.

Coding for all variables reported in the analysis showed an acceptable to high level of agreement. Agreement for Clinton’s nonverbal behaviors ranged from 92.8% for defiance gestures and inappropriate displays to 91.3% for facial expressions of anger/threat. Percent agreement for Trump’s nonverbal behaviors ranged from 89.9% for facial displays of anger/threat to 83.9% for defiance gestures. Tone of voice also showed acceptable coder consensus for both candidates, with 80% agreement for Clinton and for Trump. Because hostile interruptions, character attacks, and verbal nonfluencies occurred far less frequently than nonverbal behaviors, every segment featuring one of these variables was double-coded for both candidates for reliability purposes. Initial agreement ranged from 91.7% for interruptions to 78.6% for nonfluencies. Because not all reliability tests at first reached an 80% threshold, instances of disagreement were reviewed and discussed between coders, then recoded. Revised coding produced improved agreement, ranging from 100% for interruptions to 82.2% for character attacks. Individual percentages and frequencies are available from the authors.

Twitter corpus

To keep groupings of tweets about each candidate distinct, we generated volume measures from mentions of only “Trump” or only “Clinton” but not both within a tweet. To align Twitter activity to archived video material of the debate, we identified key points during the debate and synchronized these to Twitter mentions of that occurrence. We found a consistent gap between the debate clock on the C-SPAN feed and the UTC (Coordinated Universal Time) timestamp on the Twitter posts. Accordingly, we synchronized Twitter data to the debate feed. Each coded, 10-second debate segment served as the unit of observation and analysis. We did not code the valence of tweets for this analysis and do not make empirical claims about the direction of the response that candidates provoked. However, previous research suggests that for populist leaders, any publicity is good publicity. Recent studies have shown that media attention and coverage of populist rhetoric, regardless of the tone, contributes to candidate popularity during primary contests in the United States (Wells et al., 2016a) and increases the probability of voting for populist parties across Europe (Doroshenko, 2018; Sheets et al., 2016).

Results

Descriptive

Frequencies of all visual, tonal, and verbal elements are presented in Figure 1. Bars represent the presence of communication behaviors during speaking turns for each candidate. The one exception is hostile interruptions, which are reported for reaction shots only since they occur when the opposing candidate holds the floor. The frequency data here addresses the first proposition, which states that Trump’s communication behavior during his first
televised debate with Hillary Clinton will be consistent with a transgressive, populist style of campaigning. The coding evidence confirms this statement. Most conspicuously, Trump brought anger to almost every one of his speaking turns, showing a threat display in 96.4% of coded segments, accompanied by robust use of an angry or threatening tone in 82.6% of segments. The deployment of defiance gestures in well over half (59.8%) of Trump’s speaking segments reinforced his combative stance, especially in contrast to Clinton’s more subdued style. Occurrences of other communication behaviors were less frequent, but Trump was more likely to engage in character attacks than Clinton, interfere with her speaking segments with hostile interruptions, and blame others. Trump also committed more verbal nonfluencies than Clinton.

By comparison, Hillary Clinton’s behavior was much more restrained. Focused on maintaining her composure and delivering measured responses, perhaps in an effort to highlight Trump’s bellicose temperament, Clinton was more apt to communicate anger through tone of voice (in 35.3% of her speaking segments) than through facial expressions (in 26.9% of her segments). Her use of defiance gestures was more measured (in 20.9% of segments). She was also less likely to blame others and engage in character attacks than Trump, and much less likely to interrupt her opponent or commit verbal nonfluencies. Interestingly, she used anger language at about the same rate as Trump (in 8.4% of segments compared with 7.8%). As mentioned, it is likely that gender dynamics and consultant advice inhibited Clinton from taking a more aggressive stance in the debate; indeed, Clinton herself reported after the election that she felt constrained in how she could respond to Trump’s tirades and attacks (Bucy and Gong, 2018). Thus, juxtaposing Clinton’s behavior with Trump’s may not present an apt comparison. For context, we next compare Trump’s style with Barack Obama and Mitt Romney’s 2012 debate performances on a common set of behavioral indicators to draw a contrast with other male candidates.
Our prior coding for the 2012 debate used 30-second segments as the unit of observation and analysis (including speaking turns and reaction shots). Frequencies are again reported for speaking turns. To norm the frequency of Trump’s behavior to coding for Obama and Romney, we collapsed the 10-second segments from 2016 into 30-second intervals and recoded for whether a given behavior was present or absent in these collapsed segments. Consistent with his debate performance against Clinton, Trump appears much more aggressive than either Obama or Romney. Figure 2 shows how much Trump relies on a defiant and threatening nonverbal and tonal communication style relative to 2012 presidential candidates (see Bucy and Gong, 2016). Trump projects anger and defiance almost twice as much as the next competitor, Romney, and only infrequently exhibits reassuring expressions and affinity gestures. Where Trump does show expressive variability is in his tone of voice, using a combination of reassurance, evasion, and outrage, but his default emotional tone is still one of anger/threat.

Multivariate models

Given the finely grained, time-dependent nature of the Twitter data, there are time-series properties that must be managed. A plot of the autocorrelation function (ACF) and partial autocorrelation function (PACF) of our dependent variable confirm that the Twitter volume mentioning each candidate is persistent and has a long memory. Figures 3 and 4 show the volume of Twitter mentions for Trump and Clinton. Each graph illustrates the over-time correlations at 10-second intervals—the ACF showing correlations, and the PACF showing partial correlations controlling for interim correlations.

Tests for non-stationarity—an augmented Dickey-Fuller test (ADF) and the KPSS test—revealed contradictory results, a classic sign of a long memory process more appropriately handled using fractional integration techniques (see Box-Steffensmeier
Figure 3. Volume of Trump Twitter mentions with autocorrelation functions.

Figure 4. Volume of Clinton Twitter mentions with autocorrelation functions.
et al., 2014). Thus, we use an extension of the Box-Jenkins (1976) modeling approach known as an autoregressive fractionally integrated moving average (ARFIMA) model (Box-Steffensmeier and Smith, 1998). These ARFIMA models also test and control for the presence of autoregressive (AR) or moving average (MA) processes in each time series using information criteria. Models for Trump and Clinton indicate that besides the fractional integration dynamic, each series also contains an autoregressive component. After estimating the ARFIMA models, the residuals are saved. These stationary residuals are then used in ordinary least squares regressions to determine the correlates of Twitter volume at different lag lengths. This procedure allows testing of (1) whether the indices comprising visual, tonal, and verbal markers significantly predict increases in attention to candidates on Twitter and (2) how long it takes for different modes of performing populism to produce second-screen responses to the candidates.

Accordingly, we first created a model for Trump, \(R^2 = .50, F(2, 529) = 175.34, p < .001 \), and Clinton, \(R^2 = .50, F(2, 529) = 132.99, p < .001 \), which contained an additive index of all visual, verbal, and tonal measures identified as populist: anger/threat expressions, defiance gestures, inappropriate displays, an angry/threatening tone, hostile interruptions, character attacks, verbal nonfluencies, and blame and anger language. The model also controlled for the volume of mentions of the opposing candidate and whether the candidate was speaking.

Tables 1 and 2 show the unstandardized coefficients and standard errors of these six additional models at incremental lags up to 60 seconds. In every model, the aggregated populism index is a significant predictor of a candidate’s Twitter mentions during the debate. The best model fit was at 50 seconds for both Clinton, \(R^2 = .50, F(2, 522) = 172.77, p < .001, \) AIC = 6504.25, and Trump, \(R^2 = .493, F(2, 522) = 169.56, p < .001, \) AIC = 7311.86, a reflection of how long it takes for some manifestations of a populist style (and candidate behavior in general) to drive Twitter attention. However, the 40-second lag yielded some of the highest coefficient estimates for the populism index for Clinton (\(\beta = 13.63, p < .001 \)) and Trump (\(\beta = 51.49, p < .001 \)).

We then estimated the same models but disaggregated the populism indicators into visual, tonal, and verbal sub-indices. Although there is much that can happen between a televised behavior and a viewer tweet, we expect the analysis to show the shortest significant lags to visual cues, which require the least amount of deliberate effort to process and recognize (Olivola and Todorov, 2010), and the longest lags to verbal utterances, which require more effortful processing to understand (Paivio, 1986). Between these two poles are tonal elements that require recognition of negative affect and disruptive intent (Antaki, 2012; Scherer, 2003).

The models again controlled for the volume of mentions of the opposing candidate. Tables 3 and 4 show the results for synchronous and lagged tests up to 60 seconds. While the synchronous model for both candidates show no significant tests, the 10-second lag is enough time for visual populist indicators to work their way into Twitter discourse for both Trump (\(\beta = 35.9, p = .001 \)) and Clinton (\(\beta = 28.3, p < .01 \)). For Trump, these significant predictors stay significant in each subsequent model up to a 60-second lag. The 40-second lag model produces the best fit, \(R^2 = .50, F(2, 522) = 102.08, p < .001, \) AIC = 7314.0, and is the only model where the tonal (\(\beta = 96.5, p < .001 \)) and verbal populism (\(\beta = 44.1, p < .05 \)) indices are significant predictors of Twitter volume at the same time as the nonverbal index (\(\beta = 34.2, p < .01 \)).
Table 1. Synchronous and lagged (up to 60-seconds) regression models predicting Trump Twitter mentions.

<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t t-1 t-2 t-3 t-4 t-5 t-6</td>
</tr>
<tr>
<td>Clinton mentions</td>
<td>1.664** (0.075)</td>
<td>1.396** (0.071)</td>
<td>1.430** (0.073)</td>
<td>1.430** (0.071)</td>
<td>1.404** (0.067)</td>
<td>1.434** (0.067)</td>
<td>1.440** (0.069)</td>
</tr>
<tr>
<td>Trump speaking</td>
<td>46.899 (33.048)</td>
<td>30.226 (29.428)</td>
<td>63.080* (29.528)</td>
<td>6.427 (29.510)</td>
<td>17.954 (28.040)</td>
<td>168.594** (27.841)</td>
<td>179.643** (28.650)</td>
</tr>
<tr>
<td>Observations</td>
<td>533</td>
<td>532</td>
<td>531</td>
<td>530</td>
<td>529</td>
<td>528</td>
<td>527</td>
</tr>
<tr>
<td>R^2</td>
<td>0.487</td>
<td>0.424</td>
<td>0.425</td>
<td>0.449</td>
<td>0.500</td>
<td>0.493</td>
<td>0.472</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

* $p < .05$.

** $p < .01$.
Table 2. Synchronous and lagged (up to 60-seconds) regression models predicting Clinton Twitter mentions.

<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>.288***</td>
<td>.300***</td>
<td>.300***</td>
<td>.317***</td>
<td>.317***</td>
<td>.311***</td>
<td>.303***</td>
</tr>
<tr>
<td>t-1</td>
<td>(0.013)</td>
<td>(0.015)</td>
<td>(0.016)</td>
<td>(0.016)</td>
<td>(0.015)</td>
<td>(0.015)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>t-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinton populism index</td>
<td>(5.553)</td>
<td>(5.474)</td>
<td>(5.608)</td>
<td>(5.448)</td>
<td>(5.332)</td>
<td>(5.164)</td>
<td>(5.273)</td>
</tr>
<tr>
<td>Clinton speaking</td>
<td>18.988</td>
<td>36.282***</td>
<td>65.449***</td>
<td>60.770***</td>
<td>71.703***</td>
<td>93.106***</td>
<td>81.585***</td>
</tr>
<tr>
<td>Observations</td>
<td>533</td>
<td>532</td>
<td>531</td>
<td>530</td>
<td>529</td>
<td>528</td>
<td>527</td>
</tr>
<tr>
<td>R²</td>
<td>0.482</td>
<td>0.430</td>
<td>0.440</td>
<td>0.446</td>
<td>0.469</td>
<td>0.497</td>
<td>0.479</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.
*p < .05.
**p < .01.
Table 3. Synchronous and lagged (up to 60-seconds) regression models predicting Trump Twitter mentions.

<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>t-1</td>
<td>t-2</td>
<td>t-3</td>
<td>t-4</td>
<td>t-5</td>
<td>t-6</td>
</tr>
<tr>
<td>Clinton mentions</td>
<td>1.662** (0.074)</td>
<td>1.394** (0.072)</td>
<td>1.438** (0.073)</td>
<td>1.444** (0.071)</td>
<td>1.385** (0.068)</td>
<td>1.435** (0.067)</td>
<td>1.446** (0.069)</td>
</tr>
<tr>
<td>Trump populism index, tonal</td>
<td>57.051* (27.464)</td>
<td>8.706 (24.665)</td>
<td>−33.679 (24.737)</td>
<td>1.956 (23.907)</td>
<td>96.460** (23.166)</td>
<td>26.497 (23.160)</td>
<td>−23.711 (23.669)</td>
</tr>
<tr>
<td>Constant</td>
<td>−62.068** (22.132)</td>
<td>−54.186** (19.848)</td>
<td>−70.651** (20.047)</td>
<td>−86.820** (19.755)</td>
<td>−113.307** (18.606)</td>
<td>−118.572** (18.769)</td>
<td>−92.963** (19.135)</td>
</tr>
<tr>
<td>Observations</td>
<td>533</td>
<td>532</td>
<td>531</td>
<td>530</td>
<td>529</td>
<td>528</td>
<td>527</td>
</tr>
<tr>
<td>R^2</td>
<td>0.492</td>
<td>0.426</td>
<td>0.443</td>
<td>0.458</td>
<td>0.504</td>
<td>0.494</td>
<td>0.474</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

*p < .05.

**p < .01.
Table 4. Synchronous and lagged (up to 60-seconds) regression models predicting Clinton Twitter mentions.

<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>.288**</td>
<td>.298**</td>
<td>.300**</td>
<td>.316**</td>
<td>.315**</td>
<td>.311**</td>
<td>.304**</td>
</tr>
<tr>
<td>-2</td>
<td>(0.013)</td>
<td>(0.015)</td>
<td>(0.016)</td>
<td>(0.016)</td>
<td>(0.015)</td>
<td>(0.015)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinton populism index, visuals</td>
<td>(11.088)</td>
<td>(10.914)</td>
<td>(11.075)</td>
<td>(10.976)</td>
<td>(10.743)</td>
<td>(10.458)</td>
<td>(10.689)</td>
</tr>
<tr>
<td>Clinton populism index, tonal</td>
<td>13.115</td>
<td>11.527</td>
<td>8.654</td>
<td>18.012</td>
<td>-0.466</td>
<td>-11.915</td>
<td>-6.656</td>
</tr>
<tr>
<td>Clinton speaking</td>
<td>5.000</td>
<td>1.579</td>
<td>3.309</td>
<td>23.433</td>
<td>32.017**</td>
<td>27.577**</td>
<td>14.771</td>
</tr>
<tr>
<td>Constant</td>
<td>-17.000</td>
<td>-30.921**</td>
<td>-34.519</td>
<td>-38.984</td>
<td>-47.726</td>
<td>-56.496</td>
<td>-51.194</td>
</tr>
<tr>
<td>Observations</td>
<td>533</td>
<td>532</td>
<td>531</td>
<td>530</td>
<td>529</td>
<td>528</td>
<td>527</td>
</tr>
<tr>
<td>R^2</td>
<td>0.482</td>
<td>0.433</td>
<td>0.440</td>
<td>0.449</td>
<td>0.472</td>
<td>0.501</td>
<td>0.481</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

* $p < .05$.
** $p < .01$.
For Clinton, the best model fit occurred at the 50-second lag, $R^2 = .50$, $F(2, 522) = 104.89$, $p < .001$, AIC = 6504.15, but only the verbal ($\beta = 27.6, p < .01$) populism index was significant. Clinton’s manifestation of a populist style not only appeared to take longer to influence her Twitter mentions but had a weaker effect on the overall volume. In both cases, however, our expectation that visual populist indicators would start predicting Twitter response more quickly than tonal and verbal qualities was confirmed. We also found consistent evidence that verbal populist indicators take about 40 or 50 seconds to start driving Twitter volume.

Discussion

This study is among the first to systematically examine the nonverbal elements of a transgressive, or populist communication style and provides the only empirical examination to our knowledge of how populist communication drives candidate attention on Twitter during political debates. Our findings add to the burgeoning literature on populism and communication by applying computational methods, detailed content analysis, and time series modeling techniques to study presidential debates and social media. Although the findings reported here are limited to the United States, our approach should be exportable to other geographic contexts where political debates are televised, populist candidates have gained popularity, and viewers are actively responding to the debate using their computers or mobile devices.

In our models, we find statistical support for both the aggregated transgressive populism index and the visual, tonal, and verbal sub-indices as significant predictors of candidate mentions on Twitter, with the best fitting models occurring at 40- and 50-second lags. Disaggregating our populist communication construct into visual, tonal, and verbal sub-indices, we find—consistent with expectations from information processing theory—the shortest significant lags for nonverbal behaviors, which remain significant in each model for Trump up to a 40-second lag. Interestingly, the 40-second lag seems to provide the “sweet spot” of Twitter response for Trump’s transgressive style, producing the best fit and only model where all three dimensions of communication are simultaneously significant. The best fitting model for Clinton’s more judicious, verbal debate style is the 50-second lag. By this time, tweets in response to Trump’s performance have been flowing for almost a minute—an asymmetry reflected in his much higher volume of Twitter mentions compared with Clinton’s (see Figures 3 and 4). Evidence of rapid response to candidate visuals provides unprecedented confirmation of visual primacy on a mass scale and is a key takeaway of this study.

Beyond providing systematic confirmation of Trump’s populist projections and evidence supporting reports from both campaigns regarding their contrasting debate preparation strategies (Healy et al., 2016), these findings reinforce the theoretical importance of performative politics in the study of populist communication. Alexander’s (2011) cultural lens draws attention to the visual and tonal features of candidates during political spectacles like presidential debates by placing emphasis on how the interplay of performative and symbolic communicative forms resonates with audiences under conditions of social and technological complexity. By connecting this line of research with populist communication styles and dual-screening within the hybrid media system
Bucy et al. 653

(Chadwick, 2013), these findings contribute to emergent threads of research across disciplinary lines.

With Trump’s contentious brand of populist communication, negativity is the unifying emotion, driving Twitter responses across visual, tonal, and verbal dimensions. Different users may respond to unique elements within Trump’s display repertoire, but his overarching performative themes are antagonism and blame. Trump’s “go to” emotion was an anger/threat display—a menacing expression characterized by fixed stares and visible anger that signaled competitive or hostile intent. In the analysis, the extent to which Trump’s confrontational style of campaigning resonated with viewers became evident through the volume of tweets mentioning the candidate. To the tweeting public, Clinton’s more patient approach generated fewer posts, even when she did employ a populist communication style. This is not to say that Trump’s mentions were more positive but that his actions drove a stronger social media response.

Despite appearing incoherent and inappropriate at times, Trump’s nonverbal communication style was consistent in its anger, defiance, and aggression—and at a level of expressive persistence that not only outpaced Clinton in their first debate encounter but also that of Mitt Romney and Barack Obama in the first presidential debate of 2012. Despite verbal answers that were frequently superficial or factually incorrect, Trump’s belligerent nonverbal messaging came across loud and clear and was likely a factor in his ability to bond supporters to his cause and hold media attention throughout the election.

By contrast, Clinton’s comparatively traditional, and decidedly conventional political style—more muted in populist markers than even Obama or Romney—featured expressions that were controlled, diplomatic, and reassuring. During the 2016 debates, Clinton countered Trump’s tactics by exuding a calm determination that was buttressed by sharp retorts. Clinton employed a patient and well-practiced approach of a seasoned politician, shaped by restrictive gender stereotypes. But it held little populist appeal. Except for small glimpses of genuine emotion (e.g. the much-heralded “shimmy” toward the end of the first debate), her expressive behavior was not a great ally. She strove to project likeability and competence but her calm demeanor in the face of Trump’s bluster failed to draw comparable attention.

With visual indicators resonating quicker than verbal indicators, Trump’s nonverbal behavior more quickly influenced his volume of mentions compared with Clinton, whose mentions were more driven by verbal statements that took longer to resonate and produced smaller effect sizes. Although parsing the valence of Twitter response is beyond the scope of this analysis, the differences in volume illustrated in Figures 3 and 4 suggest distinct patterns for each candidate.

Future research on populist performance and incivility as a strategic rhetorical device should also attend to racialized and gendered cultural scripts, recognizing how political performance is constrained by social norms. While the communicative transgressions we have identified can serve as emblems of candidate authenticity, they also take place within a cultural context that likely makes these behaviors more acceptable for some candidates than others. Work should also examine the candidates’ framing of issues and emotional valence. If populist communication styles often graft themselves onto extant political ideologies, we might expect candidate performances to resound differentially across such issues as immigration, the economy, military spending, healthcare, and other matters of pressing importance.
Author’s note
Larissa Doroshenko is now affiliated with Northeastern University.

Acknowledgements
The authors thank Bingbing Zhang, Zijian Harrison Gong, and Duncan Prettyman for their assistance with coding.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government, NRF-2016S1A3A2925033, and by the Vice Chancellor for Research and Graduate Education at the University of Wisconsin—Madison through funds provided to D.V.S. Additional support was provided by funding to E.P.B. from the Marshall and Sharleen Formby Regents Endowed Professorship in the College of Media and Communication at Texas Tech University.

ORCID iDs
Erik P Bucy https://orcid.org/0000-0003-4925-2244
Josephine Lukito https://orcid.org/0000-0002-0771-1070
Larissa Doroshenko https://orcid.org/0000-0001-6763-628X
Chris Wells https://orcid.org/0000-0002-1126-9799

References

Author biographies

Erik P Bucy is the Marshall and Sharleen Formby Regents professor of Strategic Communication in the College of Media and Communication at Texas Tech University, where he teaches and conducts research on visual politics, nonverbal leader behavior, public opinion about the press, and digital disinformation.

Jordan M Foley is a doctoral candidate in the School of Journalism and Mass Communication at the University of Wisconsin–Madison, where he also serves as the assistant director of the Wisconsin debate team.

Josephine Lukito is a doctoral candidate in the School of Journalism and Mass Communication at the University of Wisconsin–Madison. She holds Ph.D minors in English Linguistics and Political Science (International Relations).

Larissa Doroshenko is a postdoctoral associate at Northeastern University. Her research is centered on the effects of new media on political campaigning, with a particular focus on social media strategies of populist and far-right parties.
Dhavan V Shah is Maier-Bascom professor and director of the Mass Communication Research Center at the University of Wisconsin–Madison. His work concerns message construction and social influence, digital media influence on civic life, and the impact of ICTs on chronic disease management.

Jon CW Pevehouse is Vilas Distinguished Achievement professor of Political Science at the University of Wisconsin–Madison. He specializes in International Relations and political methodology.

Chris Wells is assistant professor in the Division of Emerging Media Studies and Department of Journalism at Boston University. His research examines the formation of public opinion and civic engagement in the hybrid media system.